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- 1. Introduction ,

In 41) an abstract model was developed for the specification of systolic net-

works (2] and the verification of the correctness of their operation. The model

was applied to the verification of the operation of four systolic networks that had

been suggested in the literature. In this report, we extend this model to allow for

networks with slightly more complicated types of computational cells, namely cells

that have periodic memory or multiplexing capabilities.

The motivation for this extension is that we have to free ourselves from the

*simple inner product cell [3] If we want to use systolic networks in a wider range

of applications. it should be noted, however, that the suggested extensions remain

Ni very simple in structure and should not result In a complicated design for the

individual cells. Also it appears that the most desirable approach to the design

of widely applicable systolic networks is to utilize a fairly general generic cell

m which is flexible enough to be used in more that one systolic network. If this

generic cell were to be controlled by microcode. then it could be applied easily

* -to the implementation of the suggested extended cells.

The model presented in [1) and extended in this report is similar to another

model developed Independently by M. C. Chen (4]. Both separate the network

function from the specific details of a certain computation and allow for a precise

specification and a formal verification of systolic networks. However, the model in

14J is oriented toward a procedural specification, while we followed a more alge-

L L braic approach. We should also mention previous approaches (5,61 for formalizing

systoiic networks by means of a delay operator [7) and a notation that envisions

tMe flow of data as a wave front propagating over the network. This wave front
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notation has been shown to be useful in mapping given algorithms to systolic

implementations [81. However, the notation does not seem to be powerful enough

to describe the operation of any systolic network, especially if more elaborate

computational cells are to be used.

The extended model is applied to the description and verification of a pipe-

lined systolic system designed for the computation of finite element stiffness

matrices. This represents an important step in the finite element analysis exten-

sively used by engineers and scientists for the solution of boundary value prob-

lems.

Very briefly, the finite element analysis (9) is a technique for solving partial

differential equations on a certain domain Q with given conditions on the boundary

of Q. In the case of linear equations, it involves essentially the following four

basis steps: 1) The generation of a finite element mesh that divides Q Into m fin-

ate elements. 2) The generation of elemental stiffness matrices He and elemental

load vectors f for each finite element e. e=l.....m. 3) The assembly of the glo-

bal stiffness matrix H and of the load vector f. 4) The solution of the linear sys-

tem of equations Hx=f.

In the past two decades. many finite element software systems have been

developed and widely used [10. However. In practice. the time and storage

required by these systems to complete an. analysis may be extremely large. This

usually Imposes severe limitations on the size and type of the problem that can
,,4

be handled and often leads engineers to use less accurate models or lower

degrees of approximations. For this reason. many researchers have considered

some form of parallel processing in the finite element analysis. as for instance.
-- I

the use of array processors 111.12.13.141. general purpose multiprocessors [15.16].

or adaptive, special purpose multiprocessor systems [17.181. A common result in
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most of these experiments is that the time for data movement and interprocessor

3 communication is very large and sometimes dominates the running time.

A significant achievement in this area is the design of a finite element

machine at the NASA-Langley Research Center (19.201. In .this machine, a rec-

tangular array of processors is formed by connecting each processor to its eight

nearest neighbors with a global bus connecting all the processors of the system.

Each processor is assigned to the computations associated with one or more node

in the finite element mesh. Of course the nodes In the mesh should be mapped

to the available processors In a way that reduces the communications over the

global bus [21).

Along the line of systolic architectures. Law [22] suggested a systolic net-

work to assemble the global stiffness matrix, and Kung and Leiserson (3) and

Brent (23] designed systolic networks that can be used for solving the resulting

system of equations. However, no attempts have been made to use systolic net-

works for generating the elemental stiffness matrices, which is the subject of this

*I report.

The report is arranged as follows: In Section 2. we review and extend the

basic features of the systolic model presented in 1L, and In section 3. we give a

geneoral description of the system used to generate the elemental stiffness

matrices. The different components of the system are formally described In sec-

tion 4. where we also prove that the system Indeed produces the stiffness matrix

corresponding to any element. In section 5. we outline a general technique for

the formal verification of the pipellned operation of any systolic network and then

apply this tochnIque to prove that the suggested finite element system can be

pipelined to compute all the elemental matrices. A conclusion indicates some

directions for further studios.
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2. Review and Extension of the Formal Systolic Model.

In this section. we briefly review the main features of the abstract systolic

model presented in I1]. Basically a systolic network Is represented by a directed

graph with two different types of nodes. namely interior nodes and I/0 nodes

corresponding to computational cells and i/O cells of the network. respectively.

The edges of the graph model the communication links of the network. In order

to identify the elements of the graph, every node is given a unique label and

every edge is identified by a pair (c.i). where c is a color assigned to the edge

from a finite set of colors, and I is the label of the node at which the edge ter-

minates. The only restriction placed upon the edge colors is that edges directed

to the same node should have different colors and that the same holds for all

edges directed out of a node.

In addition to the graph that reflects the topology of the network, the model

associates with each edge an infinite data sequence which Is the sequence of

data items that appear on the corresponding communication link at consecutive

time units. More precisely. let N and R be the sets of positive Integers and real

numbers, respectively, and set R = RU(O). where 8 is a special element called

the *don't care* element. Then the data sequence 71, associated with the edge

(yi) Is a mapping 71:N-'Ra such that 77(t)Ra Is the data item which appears on

the link at time t. If 71 (t)=8 for some t, this indicates that we do not care (or

do not know) about the data on (yi) at the time t. We use the convention of

denoting the pair (y.i) by y1 and the associated sequence by 7y where 7i is the

greek letter corresponding to y. At this point, we note that we have chosen A to

be the set of real numbers because of the nature of our problem. More gen-

erally, R could be any set of items that can be transmitted on the communication _

links of the network.

;__ ,,
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Let ' be the set of all sequences that contain at most a finite number of

non-8 elements. Then it is natural to define the termination function T:R a-.N= 0,

N u(O) with the property that for any sequence 71. T01) is the position of the last
"

. non-0 element in 7. For the don't care sequence defined by 0 (t)=8 for all t.
*

we then have T(8 )=O. We also define the zero sequences L with L(t)=0 for

1]t(T() and any arbitrary large T(0.

The computation performed by a computational cell with m Input links and n

m m*output links is now modeled by n causal sequence operators r i An -.R

1=1.....n, one for each output link. In essence, a causal operator is such that the

* th
*t element of the image sequence can depend only on any element I of its

operands with I<t. If the condition J<t Is replaced by 1(t. the operator is called

'weakly causal'. For the exact definition of causal and weakly causal operators we

refer to [1).

In order to model the computation of the entire network, we establish for

each node of the network the sequence equations describing its operation, these

are the equations relating the Input sequences and the output sequences by

means of causal operators. Then, if possible, we solve the resulting system of

equations and obtain in this way an explicit relation between the network output -. 4

sequences and the network input sequences. This relation is called the 'Network

I/O Description'. Finally, for a verification of the operation of the network for a

specific form of input sequences, we substitute these particular sequences into the

i/O description, which, possibly after some manipulation, yields an explicit form of

the network output sequences.

As the above review already indicates, operators on sequences play a key

.. role in our model. One way of defining sequence operators is to extend known

operators on R to by applying the operator element-wise to the elements of
P8
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sequences. Examples are the sequence addition +'. multiplication '' and scalar

multiplication '' Element wise operators, in turn, can be classified in terms of

the result of any operation involving the don't care element 6. namely: 1) 0-

regular operators for which the result of any operation Involving 6 is 6. This class

of operators treats 6 as a "don't know" quantity, and consequently the result can-

not be known if any of the operands is not known. 2) Non 0-regular operators,

where 0 Is treated as a special symbol that affects the result of the operation.

Example are the operators min and max 8 defined in 11]. In practice. this class

of operators can be used to model a network where the communication links are

augmented by an additional wire to Indicate whether the link carries valid data or

not. The operation of each computational cell Is then dependent on this additional

piece of information.

A second class of operators consists of those defined directly on R In

the remainder of this section we Introduce several such operators that will be

used In the specification and verification of our finite element system. For simpli-

city, given any operator r:[JR"I - .R "  the notation [r( .'." "' n) J(t) " will be

employed to designate the t element 7(t) of the image sequence

=r( 1 , ... n . This is consistent with the convention of using square brackets

for grouping. We will also use the symbol + for Integer division and the Fortran

function mod 0 that specifies the remainder of an Integer division.

The Shift operator f r  is defined by

8 if r>0 and t(r

Er 1Ut) =

.(t -r ) otherwise.

Hence. for r>0, n inserts r 8-elements at the beginning of a sequence and

therefore models the computation of a delay cell. On the other hand, for r<0. fnr
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trims the first r elements of the sequence and thus is a non causal operator

which cannot be used to model computational cells. The role of the negative

shift operator is to provide in the proofs an inverse for the positive shift. More

-r rprecisely, for any sequence 1. we have f - fl ( = • The converse is not

always true, In the sense that nr -r ( = j only if 1(t)=8 for t~r.

The Zero Shift operator : -R has the same definition as r except that
* r

n r inserts r zeroes at the beginning of a sequence Instead of r 6-elements. The

zero shift operator is useful in modeling delay cells In networks that initially set

the data on their communication links to zero. In such networks we must assume

that the entries corresponding to the time t=1 In any non input sequence are

equal to 0 rather than 6.

The Accumulator operator A RO R is defined to model a cyclic accu-

a mulator that starts operation at time t=r. accumulates a new element every s time

units and restart a new cycle every sk time units. The Accumulator operator can

be defined in terms of the following algorithm that computes [Ajrk).](t) for any

t>O. given the sequence elements 4() for It.

IF (t<r) THEN [Ar k's11](t) = 0 /P accumulator Is Idle =/

ELSE . -.

BEGIN

t = t - mod((t-r) + sk) / time of last reset I/r

na = ((t-tr) + s) t 1 /P number of elements accumulated "/
r~ks

EA= 1, (t(t r ts/) /2 result of accumulating na elements 3/

/=0

END

Evidently, this algorithm Is equivalent with

A



t <r

EA' 11(t)=

I I O (r tsI) t ~r
J=0

where no and tr are as specified before. As an example. let

a a1 .b 1 .a2 'b 2 .* "a 7 *b7 '8.8.*. (2.1)

then

= . 1 b1 b2 ' b 1 b2 b3 ' b4  b4 b5 ' b 4 b5 b8  b7 '688

where S denotes an element that Is equal to the preceding one.

The Multplexer operator MW1.'Wfl Q -.n (fn . Is defined to model

* ~a multiplexer that has n Inputs 1.. ~* It starts Its opration at time t--r and

*periodically multiplexes Its Inputs with a time ratio of wl:w2: ... :wn. If the length
n

*of the multiplexer cycle Is denoted by k= E wo. then the following algorithm
e=1

* defines the multiplexer operator

IF (t<r) THEN IMw l..Wfl 1 utilxrIl

ELSE

BEGIN

= t -mod ((-r) +k) /a start of current cycle I/

Find the largest Ineger 14oe n

such that (t -t C) < w WI /* determine interval within cycle *

[M~~~~ ~ W '..n(,,--.If(t) /12 chose corresponding Input 4/

END

As an example. let

za 1 a2 " a .0 aV 2 P7'86 9.88.
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and

b? b 2 .** b 7 ... 8*

then

M1.2(C.71) = O,.a 3 ,b 4 b 5 a6 b 7 ,a 9 0,... b

It is also interesting to note that the multiplexer operator can be used to

model a de-multiplexer cell. For example. if we want to sample the sequence .

at times t=-r,2r.3r.... then we may express this operation as Mr (1. wherer
8 is the don't care sequence Introduced earlier.

The multiplexer operator can be used to define tw(. further operators,

namely. the expansion and the piping operators.

The Expansion operator ? AT-R models a cyclic memory that is loaded at timer 8

t-r and is overwritten every k time units. It Is formally defined by 2
12 k-

71 M.(17. fl7 (1 7?,** n 71).

which on the basis of the definition of the multiplexer operator may be rewritten

as

8 t~r2

7(t-t u  O ;r

UUwhere tu = mod((t-r) + k). For example, with of (2.1,' we have

4
E2= O,b .0,0,b3 .O.Obs0O,.b 7 ,0.0,0.0.8 ..

o It should be noted that the accumulator, multiplexer and expansion operators

are weakly causal operators, and that their defir.,lons allow us to model cells

with memory capabilities, despite the fact that our abstract model does not expli-
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citly allow the nodes to have memories or internal states.

Besides the causal and weakly causal operators used in modeling computa-

tional cells, some sequence operators are introduced here for the sole purpose of

allowing us to simplify the description of data sequences. Following are two such

operators:

The Piping operator pk • ] Rm-R" defined by

k 1 m k ] k (l-1)k i (m-1)k mPm (7 ... 1) = Mi.(77 .(7. -. 7 M.(. 7)

-~k 1 m kand T(P (711. .,11)) = ink. In other words. P concatenates the first k ele-
e

ments of each of the m sequences 71 e *=1," • .,m. and forms one long

sequence.

On the basis of the definition of the multiplexer operator It is easily shown

that the following algorithm Is equivalent with the above definition of the piping

operator

k 1 in
IF(t>mk) THEN [P (7),.., )J(t) = 0

ELSE

BEGIN

Find the largest Integer 1 4e m such that t ek

(%f (71 - 77 m)(t) = 7e(t-(e-l)k)

END
k

In the following sections, we will use the abbreviations Pe=1m (71) for

pk (1 i(
m .. ,71m). and % (71 ) for in .(. .71). As will be seen later. the piping

operator is very useful for the verification of pipelined operation of systolic net-

works.

*_

-* -.. 'g" - : L ..- n.. . a.. h . _ ,l.-.O ,. -



- 11 -

The Spread Operator ' • 6 -R defined by

4 gl)- t=l (stl) l,2(stl)t1l - -,

[e3  ](t) =--

otherwise

Hence e s Inserts s 8-elements between every two elements of e. With the

sequence I of (2.1) we have. for example

2e = a ... b .0.6.a 2 .8.0.b 2 .**" 9

Controlling the operation of systolic cells.

As mentioned earlier, the operators Ar 'k6. Mw l . and E can be usedrr

to model systolic cells, where the indices r,k and s control different timings as for

instance, the reset times, the Idle times and the active times of the cell. One

way of monitoring these different timings in physical cells is by providing each cell

with a separate circuit that generates reset and idle signals. On the other hand.

timings may be monitored also by signals external to the cell. This external con-

trol method treats data and control signals in a uniform manner (241, and Is

especially preferred if the timing signals can be propagated in the network systoll-

cally.

The external control approach Is equivalent with a redefinition of the opera-

tors where the control indices r.k and s are replaced by an additional control

argument. For example, the expression r used in modeling a periodic

memory cell may be replaced by E(Q.v), where the nonperlodic expansion operator

E is defined by

°*O ]

p]
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IE [t.-Y) I(U-1 if Y(t)=O

IE(L',y)J(t)

~(t) if Y(t)=l

and the control sequence -Y controls the resetting of the memory element; that is

S 1 t =r, r tk. rt2k,.

0 otherwise

It should be easy to verity that in all the networks presented in section 4,

* external control signals may be propagated In the network systolicaly.
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3.Problem Definition and General Description of the System

The purpose of the systolic system presented in this report is to generate

the finite element stiffness matrices HG. e=1. - .. m. for a given finite element

computation based on a given mesh on the domain Q of the problem. In order to

simplify the design and the description of the system, we assume that all elements

are of the same type. and hence that the number k of nodes per element is the

same for all of them.

The class of problems to be considered Is a fairly general class of 2-

dimensional, stationary. elliptic boundary value problems (171. The (i.j)th entry of

the symmetric matrix H. corresponding to the element e. l e m. is given by

the general formula

e 2

H f ar.1 (Dr i) (DI 1P) dx dy ,./=11....k (3.1)
r = Q

where ar. are space dependent coefficients specified by the problem, and

D ax, Dc2 D and Pr%(.y) denote piece-wise smooth

g e th
basis functions with the property that r/(x.y) Is equal to 1 at the I node of the

finite element e and to 0 at any other node In Q. The integration In (3.1) Is

performed over the area Q of the finite element e.

Frequently in engineering applications the coefficients ar.I . r.1=0.1.2 are

approximated by piece-wise constant functions on each element, in which case we
'0

may rewrite (3.1) as

2 :
= r . (Dr ) ) dx dy (3.2)

where a are constants on the element e. To evaluate these integrals, an iso-

parametric transformation (91 Is used to map the domain of each element Q into

a standard element " of the same type In another 2-dimensional space 67.7).

1K fl
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namely

k
x = V U1(.y) x( (3.3.a)

i=1

k _ _

Y = E V 1(x.Y) yi (3.3.b)1=1

: where /=lx.y) = , -(x(x-Y).Y(x-Y))" i=l....k, are the basis functions in the new

space ("V).

The integrals in (3.2) are then evaluated numerically over instead of Q.

Without entering into the mathematical details, we give only the final formula used

to evaluate Hi .

2 a q
H = E ard E w0 det06,y, D r .Yx y) Dj(xy) (3.4)

gr. .=0 g=

where q Is the order of the quadrature rule used In the numerical integration.

(Ug yg). g=1.. .q are the quadrature points with weights w9 and det(7.y) Is the i

determinant of the Jacoblan matrix J of the transformation Q*. From (3.3).

this Jacobian is found to be

k k
= jD(x.y) x, P 2  , ) x,

11 1 D21/=
k k

j 2.1 J , 22 ,. I, IyI

Because of the regularity of the standard element 17. we can easily write

'- avj, - al,
alp

the formulas for iV1U5) and Its derivatives Ui - and D2 -*r Then the

derivatives D r=1,2 and 1=1.'. .k used in (3.4) may be obtained from the

transformation

D - (3.5)
r 2 - [ T r2v
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where J is the inverse of the transposed Jacoblan matrix J

It should be noted that the quadrature points and weights as well as the

basis functions fand their derivatives Di ii '= and U2 ii - do not depend
ax Ely

on the specific finite element that is to be processed. Hence, they may be com-

puted at the quadrature points (x .y ). and pre-loaded Into the system before it

starts its operation which allows for their repeated use during the calculations of

H for e= 1. .- m. On the other hand. the derivatives D, i and D2V I n (3.3)

have to be calculated for each element using (3.5).

We denote by V (g) the value of the basis function Vii(x y) and by Ai(g)

and Vr(g). r=1.2, its derivatives Dr V.x .y.) and Dr  (xg.yg). respectively. Sup-

pose further that (x .yj . I=1.' ".k. are the coordinates of the k nodes in the

finite element e. Then the following algorithm computes the elemental stiffness

matrices H for e=1.- .m. (The steps N1 through N5 in the algorithm are par-

titioned in a manner needed for the description of our systolic system).

Algorithm ALGI

INPUTS

1) V ().A1 (g.A2 (),g1.*.-.q and 1=1.---.k

2) For each finite element e1,...-.m

2. 1) QX "Y/ ) "  /Il.''', -k

2 .2)a " r.1 =0. 1.2

For each finite element e=1.... .m DO

N 1) For each quadrature point g =1. • • .q compute the Jacobian of the Iso-

parametric transformation from

IP .I.

___
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2 e
J1.1 (g) 2 1 () 1 (g) .. k( )  x 1  1

i g J2 2 (g) ~A 2(g) - - (g)j . .
k k

N2) For g=1. .. ,q compute the temporary quantities

Tl 1 (g) ....(j ~-i(g) .() j~Q.. A 1 (g)J

N3) For g=1....q DO

N3.1) det(g) = J1 1 (g 22(g) - 1.2 (g) J2.1(g)
I

N3.2) V (g) = det(g) Tr(g)" r=1.2. 1=1.... .k

N3.3) (g) = det (g) (. r=0,1.2, 1=1.....k ",

N4) For i=1... .k compute the approximate Integrals

N4.1) For J=1. . 1. - 1

.1 q
L. E VfrgV(g) r,1=.1.

g=1

qN4.2) Y" E (g) VI(g) r=0,1.2. /=0. .rId g=l 1

N5) For i=1. • -. k DO

N5.1) For J=1..*.i-1

0 2 2 0 y.0
HII = E. E ar I  ...

r=0 1=0 r.1 Id
2 2

N5.2) = 2 E E (cr a
r=O I=r rd /J

where Cr. equals to 1 if rol. and to 0.5 If r=1.

Figure 3.1 shows a block diagram of the systolic system that executes this

algorithm. It consists of a local memory LM to store the pre-loaded values of

VI(g). 1 (g)and A2(g), g=1. *,q. and five systolic subnetworks NI... N5 that

are arranged in a cascade such that the output of a sub-network Is an Input for

a following sub-network. Each sub-network Is designed to perform the computa-
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tion in the corresponding step in ALGI.

m't"in order to compute the matrix H for a certain element e. the coordinates ".

of the nodes U ,y ), i=l,.-k. and the coefficients a r.1=0.1.2. for that ele-

ment, are fed to the system via subnetworks N1 and N5, respectively. The entries

H~ i=1=.... .. k. 1=1... .1. of the symmetric matrix H are then obtained from

the sub-network N5 after a delay period of (q+3k+16) time units, where a time

unit is the maximum time needed by any computational cell In the system to per- --

form its operation. This is basically the time required to perform a Multiply/Add

operation, or a division whichever is larger. I
Although this is a noticeble speedup of order k over the serial execution of

algorithm ALG1, the real advantage of the system lies In the possibility of pipelin-

ing the computations of the stiffness matrices for @=I, • .,m. and of obtaining

E one matrix every 3k time units. 0f course. we also obtain the advantage of a

non-conflicting and smooth data flow in the system which greatly reduces the

memory fetch times.

LM~ jV M4

A-'

e.1

F 3 Ag..., bo

Figure 3.1 - A general block diagram of the system.

.1



I
- 18-

Finally. note that we have assumed that there is only one variable at each

node. that is the degree of freedom per node is unity. In the general case of d -

6degrees of freedom per node, the constants a r.1=0.12 are dxd matrices, and

consequently each entry H,i" 1.1 ,' .,k, in the elemental stiffness matrix H is

a d xd submatrix. To compute the d2 elements of H without slowing down the

2system, we replace the subnetwork N5 by d identical subnetworks. each of which

generates the corresponding entry in the submatrix H when provided with the
i .e6

appropriate entry in the d xd matrix ar.

•H



-- - .. . . ... .. . .. ... -- .. . .. . .... -
S *

- 19-

4.Formal Description of the System's Components

0
In this section, we describe the architecture of the five subnetworks

N1.- . .N5, that execute the corresponding steps in algorithm ALGI. Moreover. we

will derive the i/O description of the individual subnetworks and prove that the

system generates an elemental stiffness matrix if appropriate input data are pro-

vided.

It should be clear that alternate designs for the components of the system

may be given. However. one advantage of the system described In this report is

its flexibility in the sense that only minor modifications are needed to use the

system for different values of k (element type) and q (quadrature formula). More-

over. our primary goal is to demonstrate the effectiveness of the formal model for

a precise specification and verification of systolic networks with computational cells

more complicated than those of the simple Multiply/Add type.

4.1. The Subnetwork N1

The graph of the systolic network NI is composed of 2q internal nodes as

shown in Figure 4.1; each node Is labeled by two integers (l.g) 1=1.2 and

g=l.....q, where q is the number of points used in the numerical Integration (3.3).

The graph also shows the color assigned to each edge, namely r. p or z.

Each interior node (Ig) represents a computational cell whose operation Is

described by the causal relations

I.g .l = n c .g 14.l.a)

P/+1.g rl Plg (4.1.b)
a k-2. 1 1= rfl8 MWk 2 ." ( i . , ) (4.1.c)

1i+1 ,g n +1-1 Y ,g X' . X ,gW 1.c

where szl for 1=2 and s=3 for 1=1. and9'
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Fiue4-The graph forNi Figure 4. n qutos(.) 4.2 spTef Ntrucomureofteypial

in rde toahayzetheIntrna stuctre f echcell (i~g) ior Nlsl.w i.

noeta eqatins (p 0 ' jg (4.2.a)b niaeta elsoudcnanamlile n

The gcuultrap (se Figure 42. and e accuulaos (4.1). (42 operiy at compeely.

and g+i+l. respectively, accumulate the output of the multiplier every third time

*unit and are reset to zero every 3k time units. The content of these accumula-

tors at consecutive time units is expressed by the sequences X). and )..9 As

* is clear from equation (4.1.c0. each cell contains also a multiplexer that starts
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operating at time g+i-l and multiplexes the input 7rig and the contents of the

accumulators with a time ratio of 3k-2:1:1. the delay element fl is introduced in

Figure 4.2 under the assumption that the elements '"'. A and M do not consume

any time. In practical implementations however, these elements do consume some

time and consequently the element labeled fl has the function of a synchronizer 0

rather than a latch.

After having described the architecture of the network, we prove the follow-

ing proposition that gives the i/O description for NI. which is an explicit relation

between the network output sequences p 3 .g" r3,g g = 1." • -q, and the network

input sequences i 1.1" 1r,g- Pl,g, 1=1.2. g=1,.. q.

Proposition N1.1 I/0 description of the network N1. For g=1. .-,q, the follow-

ing relations hold;

1 2
P3 .g n Pl g (4.3.a)

3k-4.1.1.1.1 3 -3 3
V3.g n M g+3 (n3 l 2,g 72.g X 1,g rl31,g (4.3.b)

where

g *I.k. 3 [fl1 9,*~ -1(43cXi.g = A ' En1 Pg n - .1 (4.3.c).

= Ag tiIIk.3 Enl - 1 P1 0 &l 1 C1 .11 (4.3.d)

Proof* To prove (4.3.b). we first note that (4.1.a/b) have the solutions

cig = n .1  (4.4.a)

P g n Pig (4.4.b)

. Then from (4.1.c) we obtain for g=1... q that

3k -2, 1.1
V r) M (V X* 3.g g+1 2.g . 2.g 2.g

3k -2. 1.1 3 3k -2. 1.1 X X
g 1 ( (1. g. Xl ,g) X2.g
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where X and 'k are as given in (4.3.c) and (4.3.d), respectively. Using pro-

perty P5 from the Appendix. this may be rewritten as

M 3k -2.1 •1 M 3k-2. 11 3 3 3

7 1 = M (M M .

Finally, we obtain (4.3.b) by applying property P13 from the Appendix. Equation

(4.3.a) results directly from (4.4.b).=

In order to perform the calculations In step N1 of ALG1 for a certain finite

element e, 1(em, the input sequences must be described by

7?'g = 8 (4.5.a)

=,I- I 3 2 /=1,2 (4.5.b)
g-1 3k 111 2 .e2g N22 2 )

P1'g f Pi (M I e 2rg,0 eI g=1 . .q (4.5.c)

where ,45.

T( 0),- T(IgQ )- T( o,) T(Og,) k (4.5.d)

and

1P t(g)
1

'Ogl(t) = At(g)
2

09g2 (t) = (g)

• if 1=1Yt. ,

=

00

X It 1 =2 r

in other words, (Iand 42 contain the coordinates of the nodes In the finite ele-

ment e. and V!', 0, kOg,1 and wOg.2 contain the shape functions and their deriva-

tives. A pictorial representation of these input sequences in the case k=3 and

q=3 Is provided in figure 4.9 using a time diagram In which the elements of the

different sequences at consecutive time units are displayed.
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Proposition N1.2 With the inputs (4.5), the outputs of the network NI are

described by
0gtl P3(M1.1.1 2 2

P3g=2 1 g.0 . e'g1. e 'g.2~ g =1.. - - (4.6.a)

773g= rg+k18 g ~=1.. .q (4.6. b)

where T (0 = 4 and j8 0t) 0 (g). A1 (g . (g) and J 0.(g) for t=1. 2, 3

and 4, respectively.

Proof The proof of (4.6.a) follows directly from (4.3.a). To prove (4.6.b). we first

3k*note that the operator P 2 In (4.5.0) Indicates that the first 3k elements of the

argument are repeated twice in pl1 0 . This repetition is only necessary for the

operation of the subnetwork N2. and will not be considered here. Hence, we will

replace the last 3k elements of the repetition by don't care elements. which

reduces (4.5.0) to

g-fl1 M1.1' 1  2 2 2 2(45e
P 1g ? i (e irg0 6 V . VZ 6 g 45e

Now substitution of the input sequences (4.5.a/b/e) Into the 1/0 description

(4.3.b) results in

3k -4, 1 1 11A33
IT fl '(a x n- (4.7.a)

Here by (4.3.0) and the definition of the E operator and properties P1 and P7 we

find that

g Ati.k.3  .gti-2 M1.1 1 ( 2V e2p 2 2 gi23 2 e
I~g 1 g.O 9 1 e g'.2 gi- E1  ,

=rg +1-2 A2Ak.3 M111' ( 2 aigo t] n 2 10 *o a 2 e2 I o

and by P14 that

x = ngi- A 1A. 3 e 2 IVo0 g * 4 (4.7 b)
'.g

Similarly, we can show that

x 1 lg r) A1"' e (0g.2 ti](4.7.0)
i--A
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For a further simplification of the equations (4.7.a), we consider the defini-

tion of the multiplexer operator with the restrictions (4.5.d) on the involved

sequences. This gives for g=1.....q

73.g riNg t3k -1 0e

where T(fle ) = 4 and

X , 2 ,(g 3k-1) for t=1

* 2 g(g t3k) for t=2
X 1 g(g t3k -2) for t=3

]X 1 g(gt3k -1) for t=4

Moreover, from (4.7.b), P11 and the definitions of the shift and the spread opera-

tors. we obtain that

x2 .
(g et3k - I) = [jg tI e 2 Alkl [Pg. A f ]](g+3k- 1)..

= Ep0 1 (j •(j= (A lo g, 1 2 ]](k)

k k

/= p 1(# £; ~~(g) x = J1 1 (g)
1I g 1 2i=I I X 1,1

where J (g) is specified in algorithm ALGI.11

e e
By a similar argument, it can be shown that 2 (2), 8 (3) and 2e(4) are

equal to J0 2 (g). J,1 (g) and J2,e(g). respectively. which proves the proposition

and shows that the network performs successfully the calculations In step 'N1 of

ALGI for one finite element e.1

0
4.2.The Subnetwork N2

The graph of the subnetwork N2 Is composed of q identical rows g=1.... .q
* .:'- N

(see Figure 4.3) where each row consists of three interior nodes (ig). i=34.5.

The edges are given the colors p.r,s and s as shown in the figure.

* -. 9
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From the above specifications, it is clear that cells (3,g) and (4,g) have

identical structure (see Figure 4.4) and differ only in the reset times of their

accumulators, multiplexers and memories. To reset these elements at the proper

time, external reset signal can be propagated in the network as explained in Sec-

tion 2.

Proposition N2.1 : The network I/O description of N2 is given by

4 -4

* Tr6.g =4T 3 ,g g=1.• .q (4.9.a)

1.11 2
P7,g =  r)l M g+1 ( P3.g X3.g , X4.g g=l...q (4.9.b)

where

X = rJ2 1 E 3 k  ,E 3 k  7r (49.c
X3.g (P3 ,g -+3 7P3,g 3 (4.9.c)

t3 n'3g 2. -+2 3k
'ft ~ 4g [n P3 0 fi 3 ]-~ 3 0 ~E, 4 f T 0  (4.9.d)

Proof : Equation (4.9.a) Is trivial. In order to prove (4.9.b), we begin by applying I_

property P1.3 to equation (4.8.a):

g.3,1 1.1"1 E3k E3 k

g (P3.g g+3 773.g P 3 ,g Tg 2 [-773.g]

A

Then, we apply property P14 and use 0 to replace sequences whose values are

irrelevant to our analysis. This gives

! 0 0 _ 1 .1 , 1 (E ' P , 3 , g i t E, E 3 k I
05,g = f Mg' g 3 g 2 3.g.

which from P5 may be written as

= 1M11 ft f

S0 M 11 (6 X3 a 6) (4.10.a)5.g g+1 3.g

where X 3,g is as described by (4.9.c). Similarly from (4.8.b) we obtain

05,g M' (a a X4.g) (4.10.b)

where X 4,g is as described in (4.9.d). Finally. substituting (4.10) in (4.8.c), and

using P13 we obtain (4.9.b), which completes the proof.M
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The input links of N2 are directly connected to the outputs of N1. and

hence the input sequences F3,g and P3,.g g= -....,q are described by the formu-

las (4.6).

Proposition N2.2 if the inputs to N2 are given by (4.6). then its outputs may be "--

described by

7 6g= (gt3k t3 10 g 1. ,q (4.11.a)6.g g-, '  ,  (.18
=ig 3k 3 .. II lr 0 e2g n2e2

P7. MI . 1P ,1 n g.2) g=1. '.q (4.11.b) S

where T(! 0 .)=T(!V 2 )=k and 0 ,1 (t)=T (g). 2 (t)=T2(g) with T( and

as specified In algorithm ALGI.

Proof : The proof of (4.11.a) Is trivial. In order to prove (4.11.b), we will ignore

the value of the first 3k+g+1 elements in the input 3 . and hence rewrite (4.6.a)

as

= t~g 3ktl M 1 1 (e . e'
p 3 .0  1 2 2 2 2 . (4.6.c

In order to find the output sequences P7,g. we obtain an explicit description

for X 3,g and X 4,g. by substituting the input sequences into (4.9.c/d). Indeed.

from (4.6.b/c) it follows that

PE 3k = g3kt 11.1 (e2 1n, e20 n 2 2 g2 .P3,g Eg 3 r3,g M1 g.0 g.,1 09.2

3k 1gt3k-1
g 3

We then interchange the shift and expand operators using P6 and apply P17 to

get

,E 3 - = n g 3k-1 in 1.1 1 (e21r Ie2o 0 2e2

P3.g gt3 3.g 1 g.0 g,1
E3 k Be.

rjg3k-i 3 -1 M I ( 0 .I (4]
1 g.O ~g,1 g,2gt k l 1.1,1 e

ng 3k1.1 MI (8 ne [2 (g) . . 6)1J2 .2 g,
1-
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where. as usual, the sequences irrelevant in this context were replaced by 6

Similarly, we obtain

3k g3ktl 1 I aM a 22
P3 ,g Egt 2 iTr3 g 0  M1  (6 a n e (J2 1 (9 ) " g,2])

* and thus derive from (4.9.c) that

g t3k t3 1,I, 2 0X3.g MI  (6 .ne (i (g).'P 0 1 .6)3. 2 [J.2 "

g+3k t2 1.1.1 2 2
9  M1' (6 , 6 n e [J2 .1 (g) '0g.2

(M (a ne8 () .1e. 'P a1k .2 .. I g.•

- MI  no Mje 2 2. 1 (g) . P. 2] . );L = (.l~~~g+3kt3 .1.1.1 •(g g -je() o.2
. M 0 'h 2 22) " .1 2.1 g.2,

By a similar analysis It follows that

= fg t3kt3 . 1.1.1 ( a 2e2 1
4,g (6 .. f l .l'0) ,g.2 "1.2) g.1

Finally, we substitute into (4.9.b) the computed values for )3,g and A 4.g

together with the input sequence P3 g and apply properties P5 and P13 to obtain

" = 3kt3 11.1 (2 ne2

"" P7g MI g. 0  . g.2=

where

= i
lf 1 2 21 2 1 .

2 (g ) - 2 (g) At (g) = Tt(g)

S() g .2(t ) - • (g) og.lQ ) = 2(g)
g,2 1,1 J1,2 Tt -

This proves explicitly that the output sequences P7., contain the results of step
N n G

*N2 in ALGI.IU

[.
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4.3. The Subnetwork N3

As in the case of N2, the subnetwork N3 is composed of q independent,

identical rows. Each row performs the calculation corresponding to step N3 in

ALGI for a certain value of g. 1(g(q. Due to the variety of possible designs

and to the simplicity of the network. we will not describe N3 in any detail.

Instead, we will assume that, with the inputs described by proposition N2.2. N3

takes five time units to complete its computation and to produce for any g.

1 g q the outputs

gl 3 k t8 1,121 2-- 2e2
S9.g = n M1 (e2 .0 " no 2 ;1 A n g.2 )  (4.12.a)

+t3k= .1.1 22 22P9,g = n 3 MI (e2 Ve v l n e ) (4.12.b)

where Yg,r(t) = V (g), Yqr(t) = tg(q). and the values of Vt(g) and V(g) are as

given in step N3 of ALG 1.

4.4. The subnetwork N4

In this subsection, we describe a network that completes the numerical

integration by computing the quantities--',1 = E l for the ranges of the
g=l

indices in the corresponding step of ALGI. The subnetwork is described by the

graph in Figure 4.5 and the node I/O descriptions of a typical interior node (i.g)

i=9., . .,8t3k. g=1.... .q are given by the causal relations

7'g= n 2 ir 7 T  (4.13.a)

n. Pig (4.13. b)

Ci.g+1 = ( Cig Trs.g +i.g (4.13.C)

As this description shows, each cell latches the p and r data streams by

two and one time units, respectively. It also performs a Multiply/Add operation

L I
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and puts the result on the z output link.

Proposition N4.1 The i/0 description for N4 is given by

q
q (i -8+q -q ti -9

C1.qtl n cq 1 E , V a 9, 1 i=9.. .8+3k (4.14)

zz -- k

ON I .

, g , It

PI

PS
rV

J

_: , o, zzzZ Z z .7 Y.1 
I Ar.

- 'o FA 0w~ -- tJ

Proof To prove this proposition, we first write the solutions of (4.13.a) and

(4.13.b) In the form

= 12(i-9)

P1  (I V 9  1=9. - -,8+3k, =1,. - *.qP i,g J19 g J=9. " • .8+3k . g = 1. " • .q

and then substitute them Into (4.13.c). This gives

C + n .9 .9,g A 17 a ' 9.g] (4.15)

By Lemma 1 in the Appendix. the solution of (4.15) for a fixed i. 9M <8+3k is

then found to be identical to equation (4.14). which completes the proof.U -:Li
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In order to perform the computation in step N5 of ALG1. the input links

zI, 1. i=9..- .,8t3k Should be permanently set to zero. That is to say. in the i/O 0

description (4.14) we must set E,1 = L" where L denotes the zero sequence of

section 2. With this, we rewrite (4.14) as

--. ,
CI qi. g -g1 - 9,g P9,g] i=9,-'- ,8t3k (4.16)

The next step in the verification of N4 Is the calculation of the output

sequences for a specific form of the input sequences v9.g and p 9 .g. As Figure

3.1 shows, the outputs of N3 are inputs to N4. and hence i 9 ,g and P9 ,g are

described by the formulas (4.12). Unfortunately, it Is not at all simple to find an

explicit description of the output sequences for this specific Input. In order to

simplify the equations, we will replace the Index i. 9Qi48t3k by i=9t3utv. where

the Indices u and v vary In the ranges Ou~k-1 and Ov<2. More descriptively.

we divide the 3k columns of N4 into k groups of 3 columns each. Thus, we

rewrite the network description (4.16) as

q 13u v t1 q-g 3u v
= E1 r1 7t9,g P9,g] (4.17)

g=1

Proposition N4.2 With the inputs described by (4.12). the network N4 has the

following output. For Ouk-1 and Ov<2

=2(3uev) +w 1.1.1 2 O.v 2 I.v13 2e 2  2.v12
Cu'v'q* 1 ne .(e2 71u ' 77 (4.18)

where 0 is a modulo 3 addition, w=q+3k+9 and for 0412, we have

k -u if r 41 .t if r.

T(?u'l) =  i and " (t) .I if r
U k-u-1 if r>1 1 t~ttu if r >l

1.11-u +1i
Proof Using the input sequences (4.12) in (4.17) we obtain

0I
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q 3u+v w 3 u+vM 1.1.12 2-

S :1 " ( 0 " e 20
• f g l n 2  2 2 )g=l 2) ,o 4l

M1.1.1 2 2M (e .nO n Vq qne2Yg.2 I

n Ul* * qv +w E111 2 2 22 (.9= ~uvw )' .M1.. (evg e2g/) -

g= 1 .v.g 1 g .0, .1' Y (4.19)

where w=q+3k+9 and xu.Vg is found by properties P4 and P5 to be equal to

l el2Onu 2u- 22ifu=1 o .(e2nn e n g10 2) if v=
S 111 (e2 ui ne2u u 2 2 ui v=

u.v.g V1 n 2 U no n . n e n ;1
1 (e2nu + 1 2 u+I 2 2g. g0

(fl V9. 1  ne nl 79 q.2 .n on 0) If v=2

The result (4.18) Is then obtained by first applying P1 to perform the multi-

plicatlon in (4.19). then by pulling n u  out of the M operator with the help of

P5 and by applying the summation to the arguments of M (property P1.2). As an

illustration of the derivation procedure, we consider the case v=l for which we Od

have

U + 1l+W q 1.1.1 2 u.

u,=.qMl g=I g.2 n.'

g,o 1] n2 2 U . g.2

3ueltw 1.1.1 2 utI 2,0 2 u 0.1 2 2 u 1.2-n M (on 71 no n 71 noenSU 1U u
where. from P1. T701 ) = k-u-1. T(7 1 ") = T(7? .2)= k-u and

2.0 qq 2 0 (g): Y2.0K.120 = [;g(t) * ,g.Ot-u~l)= ( [V- t~) VO u()] ='~

77u (t) = g.2 t-u-1 t.t-u-1g= g 1
qq

1.2 q qgI 21.2 .71u'2Q) Q~ ; g ~ ) Y Qg2(-u)] = g['() (- ) = tt-U
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Finally, we apply P5 to get

U 2(3u +1)+w 111 2 0.1 2 1.2 2e2 2.0 VJulqt1 M (e7 ne 2 n e

which is a special case of (4.18) for v=1. The cases v=O and v=2 are proved in .:.

an exactly similar way. n

eLg - Y3 4 Y

Lat, ,4

I ~ ~ ~ ~ Z 4 *C
3.2 4 - y * yY-

at . " ,

ii aiI .8 /.- .

y 4 * ' ,. , ",/ .... _YY Y.I

7 . * I. 449.0 I',: " * :

ii , LI -iy* , . ...... .

,r9 0 9 I

Z , - f, "-~ I

...

's

23 nd =

U'V 'V

oupu .at item. In fiur 4. thi spcfcto stasae noatm

7--

d quation (4.18 shplow that elemnth outpt rsus tm for cotai the

of kc=3 and q=3.
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4.5.The Subnetwork N5

The network N5 is composed of three different rows (see Figure 4.7). Row

q+1 contains 3k identical nodes. It receives the constants a on the links
rJ

P9.q1 tI" rql and sgql and distributes them appropriately on the b colored

links such that each integral /' appearing on a z-colored link meets the

corresponding constant a i at the right time. Row q+2 also contains 3k identi-•2

cal nodes and computes the partial sums U : ae Y" and
2I =0 r.I 1 .

, (C,. a) 1:' for io and /=/i respectively, where c,. is as given in ALG1.

2
Finally, row q+3 contains only k nodes that complete the sum H = " Ur

r=O -
/

The edges of the graph are given the colors p. r. s. b. z. z z or z2 as

shown in figure 4.7. Note that we used three different colors z0  z1 and I to

satisfy the restriction that no two edges ending at a node have the same color.

* To simplify the analysis, we consider each of the three rows separately.

z.~~~e ty zz-=,.'

LI, , s:*p iso, a '.,1 ---

, ~~L '-,3 Z&#",I" _.

.1Z.,

Figure 4.7

,I 
IL ,
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We consider first the row q+1 in which each cell simply latches the four

3data streams z. p. r and s by one time unit. and selects the output on the b 0

link to be

n r [h i.V ijqtlj If i =9t3u. u=0. - k -I

loi.qtl npi.tl If i=9t3utl, u0O.*-.-

nl 01 lIf i 9t3u t2, 0 -... .k- 1

where h, =0.5 for 1=9 and h. =1.0 for 0>9. The factor 0.5 is needed to imple-

*ment step N5.2 in ALG1. where only the I 4r are explicitly available for the

computation of H while we have / 1=~"for I >rij, .d 1.d

For the proper operation of the system the input sequences should be

described by

3f 09t w Pk3(a)

n9q. w P 3(a) (4.20)
w 3

09.ql. t I P; (a2 )
where for i=0.1.2. T (a) 3 and a.(t) a with a denoting the modulo
* t-1032j t-1
3 addition operation. More descriptively, we Input on each line three of the con-

6 3
stants a,. r .1=0. 1,2. repeated k times as indicated by the piping operator Pk (for

more details see Figure 4.9).

Using the two Indices 04u~k-1 and 004~2 as In the previous subsection,

and noting that the Input C iqtl is given by (4.18). we can easily show that

~2(3utv)twtl 111' 2 0'v 2 1,vC31 2 2 2.v02* u~v~qt2 = r)l M .e 1Une ) ? (4.2 1.a)

= 3utvtwtl P3(h(. .bu.v~qt2 k hl . v 42 b

*where h =' 0.5 if uv0 and h =~ 1.0 otherwise.
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= p -p

Figure 4.8 A typical cell in row q+Z of N5.

The 3k cells, (i.q+2), 9Ci8t3k. In row q+2 have basically the same struc-

ture. each is a multiplier/adder equipped with a demultiplexer that distributes the

results to the output links pi~lq*2 and €uq 3 (see figure 4.8 where u and v '1

equal 1he quotient and the remainder of -, respectively). Formally. the operation

of each cell (I.q+2) is described by

P+ q+ 2 1-W12 U i+k)(4.22.a)
2 12Pi~ flM21= Mi9w-( i )i (4.22.a)

cuV,q 3 n M M/-9+w+I (Pi t + Xi 1 0) (4.22.b)

where Xi :(q2 " Clqt2 and the input pgq 2 permanently set to the zero

v
sequence L. For a description of the outputs C we solve (4.22) using

Lemma 2 in the Appendix. This yields

1.2 * 9"Mi_+ 1 i U 0 i=9.".
9 1 1=1,Al.2 ([2)

Cu.q 3 1N9+M_9w+1 [W / - i '.) +=10 (4.23)

M 1 2  [n4 + + X 0 1=1. .8+3kSi_9+w+1 i-2 +  -1 + )i]  . :1..83

where by (4.22) and (4.21). 1 = 3uv9 Is given by

= 3u+vtwl P3 "3 * ,3u +v M 1.1'. (e271 O.V 2ne 2 1v l . ns2 7) 2"v02)]
OU I U neU

= 6u+v+w~l [3_uh~ , v v M1,1,1 t:-2 u0'V r=-2 u'l Q 22 u2 2vO:2.,j
n (p av) *

Moreover, with the help of property P17.2 we rewrite this as

S 6U V+W l Nv 1.1.1 2 O.v 2 1.vol 2 2 2v02

3u~v+ M (e U~ .ne AU .ne9AU (4.24)

where

I . ,. ,0. .. ,..." . - '- ,.. ,.. .l- ...J- . *.. :. . .'
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r.v[3r h a ((vr)tl) ,r' v O r = h ae 77r.vDr r=0.1 T,2u u.v V U u.v r.vDr u

that is T(Ar') = 0( r . ) and -

U uv(t)h (d8 nu (4.25)

I Proposition N5.1 : With the input described by (4.18) and (4.20). the intermediate
vsequences Cuq 3" u=0.....k-1. v=0.1.2, are given by

6utvtwl M1 .2 3 2 2.2 2.1 2,0
01 ( + CAL 1] A 8A) for v=0

vC u.qt'3 .uevw l 1.2 3  2 1 2 1.1 1.0 for v=1 (4.28)Cuu"+ M n( A 1]  a forv= (4.26)

6u+ +w +1. [A 0.u + A 0u1 + A .01] ) for v=2

12 02 0

, where we extended the definition of a4u  such that '-1 equals the zero sequence.

Proof For the case 111. we first use P5 to rewrite (4.24) in the detailed form

6u+w+1 1.1.1 3 2 1.2 2 0,0 2 2 1.1M i (n ' e AV u ne AU 0 u  for v =0

X,= 3u+v 9  M1 ( eAU neAU r) Ml a', ) for v=l
6utw+2 1.11 (3 2 0,2 4 2 1.0 5 2 1 fnM1 (fla 4  ./ eu a/ ,nea2 1 /. " for v=2

IU

Then, for the evaluation of X,-1 = X 3utv' 9' we note that 04v'(2 and

hence I-1 = 3u+v+8 should be written in the form 3(u-1)+2+9. 3u 0+9 and

3u+le9 for v=0.l and 2. respectively. With these forms for I-I in (4.24) and the

help of P5 we get -,

~6u+w M1 '* ~ 3e 2 2.1 2 0.2 2 2 1.0n M (E)aU ,..1 .fie aU -.1 . e AU... 1) for v=0
0 2 X n 6u+wtl M 1.1.1 (fl 3 2 A .1 ne 2 A2 .2  n 2e 2 a0 ° ) for v= 3.

(-1 / u- u- u--.

I U U U
6utw+2 1 1 1 3 2 0.1 4 2 1,2 5 2 20M () n a A n 9 A n e A for v=2

Similarly, we write 1-2 as 3(u-1)+1 9. 3(u-1)+2 9 and 3u+0+9 for v=0.l and

2. respectively and get
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6u w 11.1 3 2 2.0 ne 2 0 f1 2 2 1.2
M1  (n e .n( A for v=

4 6utwtl . 11. 3 2 1.0 4 22.1 2 2 0,2
{=2 M (n e u- nt_ al A Iunl/ for v=1

1 eiU.-1  UeM-1
2 1 1 (n3e2 0,0 n 4 2 1,1 n5 2 2.2.(_ u~+2M1a neu' .ne,#'u) for v=2

1 U U

Then by adding these three formulas to get n4 X1 2 + n2xiI + X.I by and

substituting the result in (4.23). we directly obtain the equation (4.26) for 14u~k-1.

The case u=O. that is i=9,10 and 11, can be analyzed in an exactly similar

manner yielding the result

t6uw+vl M 1,2 n 3 e 2  ( .262 ) for v=1

1 Uv 6utwtv+1 12 3 2 1.2 1 .C 'q t3 =  M . 1" (nl 9 t u " + 'u" I a f or v=1

I n 6 u +w +l V ~ l M 1 , ( n_ 3 e 2 [ A 0 2 + / 0 1 + 0 0 1 o =H M1 '  z6t [gu +s" . ° ] .60) for v2

rd
which by defining A_, = L may also be put In the form (4.26).8

0 a 2 is

Finally, each group of three sequences and Cu q3s

considered as input to a cell (u,q 3), 04u(k-1. in row q+3 of N5. The opera-

tion of a typical cell in row q+3 is formally expressed by

C A 6u+w+2.3.1 M111.1 ( 0 1 2 (4.27)

u,q+4 =  [cu 6u~w+2 (u,q+3 Cu.q 3 u.q+3 (.7

1.1.1 20 1 2
-fl[c u . M6 uw+2 (6 a In Cu.q 3 + r 'u.qt3 + Cu.q3

where c equals to 2 for u=0 and to 1 otherwise.

By substituting the sequences (4.26) Into the network description (4.27) we

easily find the description of the output sequences as

(6utw 7 e2  - • • k• (4.28)

whr uq4AUu 
=0. - ,k - 1 (428

,qp4 u

where

*i

*]
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2 2 rd 2 r-1 r,/T_ °  t E;' E, A fU>0
r=0 I=r r=1 /=0

A4J

122
AU if u=0

r=0 1=r

Using the definition of ,rd from (4.25) in (4.28) and comparing the result

with step N5 In algorithm ALGI, we readily prove the following proposition:

Proposition N5.2 If the Inputs to the network N5 are given by (4.18) and (4.20).

then the network's output sequences are given by

uq = 6UWt7 e2 " u=O.. .k-1 (4.28)u.qt4

where T(/u ) = k-u and "A (t) = H
u u t.tl u

Proposition N5.2 states that after an initial time period of 6u+3k+q+16 units.

each output link u will carry the elements of the uth off-diagonal of theeac oupu lik u.q+4

stiffness matrix H e . separated from each other by 2 time units.

EL To summarize the behavior of the entire system, we show in Figure 4.9 a

time diagram of the data on all the input and output links of the alobal system.

It represents a translation of the sequence equations (4. 5) (4.20) and (4.28) for

the special case k=3 and q=3. The data items in the input sequences 41 - 42 .

'9.qtl' P9q1.l and Ogq 1 depend on the finite element that is being processed

and hence they must be provided from outside the system. On the other hand.

the data in pl.g" g=1. --,q do not depend on a particular finite element and

thus, as mentioned in Section 3. they are provided from a memory local to the

system.

In general, the time for completing the computation of one element stiffness

matrix is 9k+.q+10 time units. In the next section, we will prove that the computa-

Le
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lion for different elemental stiffness matrices can be peitnea through the system

and that the elemental stiffness matrices can be generated at a rate of one

matrix for every 3k time units.

4C * , •• * He
.5

37 H 4 4 4 4 4 I HE

34

-14~ ~ .a4
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Z 4 I a 4 S a a
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5.Verlflcation of Pipelined Operation

For a given systolic network that has been shown to perform successfully a

certain computation, we want to study the issue of repeating the same computation

on different data in a pipelined fashion. Assume that a certain systolic network N

has the I/0 description

71i= r , ' i =1,'*. , p (5.1)

where ti" j=1- , .n and 71, i=1,. .p are the Input and output sequences of

the network. respectively, and ri, i=i,... ,p denote certain causal operators that

model the behavior of the network. Suppose also that for a certain input descrip-

tion

r ai /=1,. .,n (5.2)

3 with given Integers ri and sequences a we were able to show that the outputs

are described by

71 = 'Si  i  i=1.' ',p (5.3)
ii

with certain integers sl and sequences F1i. That Is, In other words, suppose that

when (5.2) Is used in the equations (5.1), then we were able to prove that

= ri( l . . .-rn

S =r,(nr a1" i an) i=1..''.p (5.4)

The calculation of the elements of 3.. 1=1." "p from those of al.

i=1.. -.n using the network N shall be called the computation *C". The time of
this computation is defined as the time required by N to complete C from the

moment when the first non-0 input entered N to the moment when the last non-8

output was produced. More precisely,

Time(C) = max( T(0f fi); 14i(p) - min( ri: 14i/n) (5.5)

where T Is the termination function defined in Section 2.
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Often, it is desirable to repeat the computation C. say m times. with dif-

ferent data sets A = (a.:j=1. n), e=1. .m. Let us denote these m instances

of C by C. e=l... ,m. In many networks, this may be accomplished by pipe-

lining C 1
. *. C The time difference between the initiations of two succes-

sive instances C and Ce tl will be defined as the pipe separation T of the

computation C. In this case, the inputs for the different instances of C should

be pipelined on the Input links. That is equation (5.2) for the input sequences

should be replaced by

A ri -7 a
( a /= =1. ,n (5.6)

= i

where we used the asterix In I to Indicate that the sequences represent the
e

input data during the pipeline operation. We will also use I1 to represent the

inputs (5.2) for a specific instance C of the computation. This * and e super-

script notations will be used in the remainder of this section for sequences on

any communication link.

If the computation can be successfully pipelined on N with a separation T.

then by using the Inputs (5.6) in the network I/O description (5.1), we should be

able to prove that the output sequences during pipelined operation are described

by

71i = ==lIr i = ,...,p (5.7)

In order to ensure a successful pipelined operation, the pipe separation T

must be large enough so that the Inputs of the different Instances C e do not

overlap and the corresponding outputs do not overwrite each other. The first

condition implies that T>T(a e =1, • .,n, and the second that T>T(0e),

=1,... .p. In other words, the minimum pipe separation rm(C) for the computa-

tion C Is equal to the maximum span of all the input and output sequences in C.

where the span of a sequence Is defined as the time difference between the first
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and the last non 6-elements in the sequence plus 1. that is the time during

which the sequence carries imformation relevant to the computation. Hence, from

the viewpoint of pipeline operation, a network that can be used to pipeline a

computation C with a pipe separation rm(C) achieves maximum efficiency.ao

In order to prove (5.7) from (5.6) and (5.1) without repeating the effort

spent In deriving (5.4). we use the negative shift operator and the equation (5.2)

to rewrite the pipelined input (5.6) as

e=lm a - (5.8)

where 0 are the Inputs that would be used if the Instance C of C had been

performed on N without any pipelining. Next, we substitute (5.8) into the network

i/O description (5.1) and obtain for /=1,..,,p-

1 r((,r pT (-r to )I...- T= (h-rnf )) (5.9)•~ ~ • fiI,m 1 = I .m ..

The remainder of the proof is based on the use of the different properties

in the Appendix for factoring the shift and the piping operators out of the causal

operator r. If the computation can be successfully pipelined through N. then we

should be able to transform (5.9) Into the form

F1 nsi p"T n'l I'i(4i,... 11) /=1I...p (5.10)

which by (5.1) and (5.3) directly reduces to (5.7).

It should be noted however that there exist computations for which there Is

no value for T' for which (5.10) is derivable from (5.9) which means that the com-

putation can not be pipelined. On the other hand. we can identify a class of

computations for which pipelining is always possible. We use the term 'Inert" to

identify computations in this class. In other words, a computation C on a systolic

network N is called inert if it has the following two properties

* 1) At its initiation. C does not care about the data on the non input[ ,
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communication links of N. that Is we may assume that at time t=1, the data

in any non input sequence are O's. This implies that any delay in N should P

be modeled using the shift operator and not the zero shift operator.

2) Only 6-regular operators are used for modeling the cells in N. This

Implies that the network does not treat 0 as a special symbol.

It is always possible to pipeline an inert computation C through the

corresponding network N. In fact we may simply chose the pipe separation 7' to -

be the time of the computation as defined by (5.5). With this value of r", C e l

does not start before C is terminated. Of course. we are not Interested In such

large values of r. and hence. the problem arises of finding the least value of T

for which (5.10) is derivable from (5.9).

As should be clear from the above discussion, the ability to derive (5.10)

from (5.9) is the major Issue In verifying the pipeline operation of any systolic

network, and this ability depends principally on the value of r. However, for any

inert computation C, we know that there exist a value for which (5.10) Is derivable

from (5.9). In order to find the least possible 7. we start with 7 = Tr (C) and

proceed to factor out the shift and piping operators from (5.9) until we either

reach (5.10), which is our goal, or we cannot continue the factorizatlon due to

our small value of T". In the latter case. we increase T appropriately and repeat

the derivation procedure.

For all the networks presented In Section 4. where all the computations are

inert and the maximum span of all Input and output sequences Is 3k. it can be

proved by the above technique that the m instances of the computation of the

stiffness matrices can be pipellned through the system with a separation

T = Tm = 3k. hence. the entire system can be used to generate the m stiffness

matrices in a time equal to t3(m-1)k, where tc=9k+q+10 Is the time consumed
cC
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by the first instance of the computation. In order to illustrate the derivation pro-

I - cedure, we will apply It to the verification of the pipeline operation of the subnet-

work N4.

* 5.1. Pipeline verification of N4

Before starting our verification procedure. we recall that In section 4 the

network 1/0 description of N4 was found to be given by equation (4.16). which is

q i -Stq-g 1-9
li.qtl n '9.g i =9." - .3k t8 (5.11)

9=1
Moreover, when the inputs for a certain Instance C of the computation are

iT0 = (Itk+ V g=l.** -. q (5.12.a)9.g g

p9,g t03k tS g1l.- - .q (S. 12. b)
then the outputs are given by

2/ 213k tq -9 e
~I~i. =71~ =9,** - .3krit8 (5.12.0)

*where the detailed forms of the sequences V and Y containing the input data
0 0

for C. and the sequences 711 containing the results of C are specified by
*(4.12) and (4.18). respectively. For the following discussion, we do not need

these detailed forms. It suffices to know that TO~ T(v ) =3k and TO?%) =3k-
0 0

(1-9), and hence that the minimum pipe separation is 7m 3k.

If the computation C Is pipelined through N4 with a separation of 3k. the

* Inputs should have the form

* g t £.t8 3k ~-e g t3k tO 3k -(g t3k t8) *
*~~~( n~9. = (n.3 s. V~i =m ~ i 9  (5.13.a)

and

=;, ng +3k+8 1 m (11e) = g3+ fl ke~m~n(g3'' Pe0 (5.13. b)
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r Using this in the network 1/0 description (5.11). we get the pipeline outputs

in the form

q i E tqq-g i-9 0 gt3k +8 3k (g t3k +8) 17)i.q+l g=1 I'1m .

ng +3k +8 p3k (n-(g 3k +8)e
e=1.mp 9 0 ) (5.14)

Now, by properties PI and PS in the Appendix we obtain

ni +3k +q 3k 0-Ut3kl'q) q nl-8tq-g U1-9 *r
Cj .q+i OeLi m9 .g [f 1T9 PI 1 (5.15)

g=1
which by (5.11) and (5.12.c0 reduces to

l11+3k +q P 3k 1fi-9
Cjqg. = 1m 77) (5.16)

Finally, because of T (n 1  =-+T k. we use P8 to write (5.16)

as

*~~2 2+3k tq -9 3k (7)
C1.qt1 n *=1'm (7

which proves that the sets of results (717 1=9.* . . 3kt8) of the different Instances

e~, , will be correctly produced at the rate of y-if the set of inputs

(V v g =1.* - - .q) are pumped through N4 at the same rate.

9 A

-A
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6.Concluding Remarks

This paper demonstrates the power of the extended systolic model by

applying it to the specification and formal verification of a systolic system that

can pipeline the computation of the elemental stiffness matrices. j
There were no difficulties In establishing analytical proofs for the opera-

tion of the different components of our system. The reason for that may be

the absence of feed back loops and the fact that our system does produce .

what we called an inert computation. However, an analytical verification of a

systolic network is not always possible, and any conditions under which a net-

work is analytically verifiable using our model are as yet still unknown, In part

due to our incomplete sequence algebra. As a means for alleviating this

problem, a computer program was developed that solves Iteratively any system

*of consistent causal equations. This solver may be used In the verification of

particular instances of computations whenever analytical verifications are not

possible. The details of this solver/simulator will appear elsewhere.

Although the abstract model has been used here to specify the archi-

tecture at the level of the computational cells, the same mool can also be

used for lower or higher levels of architectures provided we define appropri-

ately the domain R of the data Items that are transmitted on the communi-8°

cation links of the network, and the corresponding operators.

Besides its value In demonstrating the power of the systolic model. the

system that generates the elemental stiffness matrices appears to have merit of

its own. In fact. It Is a contribution to the design of an Integrated systolic

finite element machine. For the implementation of any such machine, two

alternatives may be considered: 1) We may use a systolic network similar to

the one proposed In [221 to assemble the global stiffness matrix and then
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apply one of many systolic networks suggested in the literature [3. 23, 251 for

solving the resulting linear systems of equations. 2) Or we may use the sys-

tern described in this report in a larger system that employs an iterative

scheme for completing the finite element analysis. Further research is needed

to assess the merits of the two approaches and to determine the global confi-

guration of the system.

In addition to being adequate for VLSI implementation, the design

presented in this report has the important advantage of being modular in the

sense that if the system is designed for a specific value of k (element type)

and q (quadrature formula). it can be easily modified to perform the analysis

for different values of k and q. Of course the design is Independent of the

finite element mesh or the number of elements m In this mesh.

We have shown that for the general class of problems described in

section 3. the computation of the elemental matrices is completed in approxi-

mately 3km time units. However, a careful examination of the design shows

that this time may be reduced to (2k+1)m for some special problems In which
e

the coefficients ara are equal to zero for r=O or 1=0. Examples of this

important class of problems are the heat flow, the plain strain and plain

stress problems [9). To obtain this reduction in time, some control parame-

ters have to be changed as well as the forms of the input sequences. At

this point we note that with the technique described in section 5. it can be

proved that a successful plpelining of the operation on the modified network

requires a pipe separation r equal to 2k+1. This is larger than the minimum

pipe separation Tm= 2k for the computation, which means that the modified

network cannot operate at maximum pipeline efficiency.
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Finally. we note that it is not simple to define a measure that estimates

the efficiency of systolic networks. An intuitive measure would be -f. where T SC.
is the time needed by a systolic network to complete the computation. P is

the number of computational cells in the network, and C 19 the number of

o operations to be computed by the network. This measure. however, does not 0

take into consideration the type of operation performed by a cell, which ranges

in our case from simple memory cells to floating point dividers. It also

Ignores the benefit obtained by the regular movement of the data in the net- '0

work. In (261 the authors suggested a more elaborate measure that takes into

account the band width of the input and output links in the network In com-

paring the efficiency of the different systolic networks. Both measures estimate

the utilization of the computational cells In a network without differentiating

between the different types of cells. This is acceptable if all the cells in the

U network are of the same type. However, If the network contains more than one

type of cells, as is the case with our system, we believe that the utilization of

each cell should be multiplied by a weight that reflects the hardware complex-

U ity of the different cells. More work is needed to develop an efficiency meas-

ure of this type.
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Appendix

In this appendix we list some properties about combinations of the different

operators defined In this report. All the properties are directly verifiable from the

definition of the operators and are very useful in simplifying any manipulation of

the sequence expressions. It should be noted that the zero shift operator is not

included in any property. This is due to the fact that it was not used at all in

modeling the networks presented in the report.

Most of the properties take the form 'sequence expression = sequence

expression*. However, some have the form * sequence expression sequence

expression% where we formally define the implication operator as follows:

IF for any t either 71(t)=C(t) or 7(t)=b THEN 1-71-

that is 71 is equal to 4 after replacing some of its elements by 6. Consequently,

if -71. then we may replace { by 7/ in any sequence expression as long as 6 is

treated as a don't care and not as a special symbol. that Is in the contest of

inert computations. Of course, if C-.71 and 71-1 then J=7.

P1) For any element-wise operator "op" with 6 'op' 0=6 we have

1.1) For r = n. e. E or P

r(,) 'op" ro(v) = r( 'op' 77)
IV I..M ww 1 ..... wn

1.2) M w f 1.... (.7n) = (71r 1 "n ) r 1

M wI 1 ..... n n([I "op" "71),. .1"[4 'OP" 71n)
r n

1.3) As a direct result of P1.2 we have

op ....W w (77  = (wfl ' '' '. [1 ' "op 71n)r 1-p -7()"' Tn) rIn

1.4) if. in addition. 'op' is a 6-regular operator then
r =I

flr  , 'op' 77 = ,r

where T(C) = min(T(7?)-r.T(j)) and C(t) = J(t) 'op' 7)(ttr)
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1P2) For the scalar multiplication operator .'. it follows that

2.1) For 1 = . e. E or P O

W r(Q) = r(w t)V

r n '77 r1112.2) w.M1...w(7/ .,. . /n = MW fl..w([w( l . . . w n)-"

P3) Composition of n with Itself

3.1) n n = 2

-1-- "3.2) 171 n'

3.3) 0 - = If and only if J(1)=

3.4) - n 0

1P4) Composition of n with e f "i
er  Nk  , 1 (r t)k  er  for r >0 and any k

P5) Composition of n with M
MW 1 ..... wn (s " "Snwl..wn(# .. ...3

5. 1) r s Mw n M"n = (rn
r n r ta

for any rand s > -r

5.2) f) M r  " = M" w 
"" "e

rtkn .'n Mr n..-

5.3) nk Mw I .... wn q M wl ....wn ( l.k k"

r nC~ , Mrn
where k w t . . *tw n

5.4) M w 1....wn r ,-r Mw 1...,wn q Irtl n" rtl I" " n)

.w (.... wn ,, M w. I ..wn( . .,5 .5 ) M 1 ,. (,w 1 ' ' i ' n ) = .. ..w nn (I_1n -

where q =w l1t... 'tw i _ 1

PO) Composition of n with E

6. 1) Ek 8  =SCOS Er I for any r and s > r

6.2) E+ O-r Ek

6.3) Er 6 k E rr
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P7) Composition of ni with A

C1 7.1) Ar ' k.S nS u t = flu Ar - u 'kS , for u < r

rtl k s r ,-r rtl k $
7.2) A k '  = ' r A

P8) Composition of ni with P

8. 1 ) r Ok  qe) P k (n r ce
e 1m e =I.m

k rf r A k8.2) Pk = ( t p) q if T(J ) 4 k-r
-lt kA e k -r ee

8,3) -  e=1.m q Pe=lm (n ) If T(le) 4 k

8.) ~ r1~ ~e -r P e) -r ~r ~e e

8.5) k nk pk i

11P9) Composition of e with Itself

er ek =ek er =ekr tk r

P10) Composition of e with E

e1 es -1  " s-1 l

* PI1) Composition of e with A

A e = E5 es-i A k

P12) Composition of e with P

oSk (e -1 e) e3- 1 Ok ( e)6e=1 ,mrn e =1 ,m :

P13) Composition of M with itself

13.1) if M r 1 *" 7 ) then

k -' 1' k n -n 1..., " ' '/ '' ' n :

13.2) MArni....l (M (n1..1 (. 1M " ) =
r r +n 1 ,7

A-n -rn , .Mr , .... 1 .... , 7 . I ... .. ,n) for mtn < A

I

J . . ..- .. ..-. . -
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P14) Composition of M with A

1 . .. 1 . = Ar.k.s rfor 1<r4s0I r
14.1) A M r Af 1 fork Mr 771r *7

i-u
where 7 =  fl -ud u

P15) Composition of E with P

Pk,m(e Pk,m(El k e)
1 e~lm~ 'I =e''

P16) Composition of A with P

1,k. 1 nk e) = pnk 1,k,I
A Pe=1,m e=1,m (A

P17) Other properties involving the multiplication operator "

17.1) E 1t, 71* - [](r+l) . r-r 7 if T(7)) 4 k r

it1 1
17.2) O M 1  1 n-1 (71 ) = fl M1  ""

i where . = 77((il r)tl) . r , r=0,1,.. .,n-1 and n n, is the

modulo dition operation on Integers.

Next. we state two lemmas that can be proved using the above properties

Lemma I : The system of difference equations

fg+1 = 1 f g t Ag g=1.. .,k

has the solution

r

4rtl = r 41 =1 r= ,. .,k/=1 /J-

Lemma 2 : The system of difference equations

n £2 M 1,2(t,( l)i=
12( s~ ( )i p] i=r0 ... .r I -0

1,2
i= f i M 1ei([x, Pi] " ) ,=r0.. '

with the condition prO = E has the solution

.*_ , : ,,,,. ma, ,. = = .. ..... m-.m ma,-.- .,.-m , m ,m ,m lm r a ft ' 'm
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Sf ir 0

1.2 2ni =  i M ([n x'- + xi t)i=ro 2,.i
MSOl[ i-2 0 2iI*)i ) ~ o2''r

- I

I-

4.

4°

4.
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